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Figure 1. DreamSpace allows users to personalize their own spaces’ appearances with text prompts and delivers immersive VR experiences
on HMD devices. Specifically, given a real-world captured room, we generate enchanting and holistic mesh textures based on the user’s
textual inputs, while ensuring semantic consistency and spatial coherence (e.g., the sofa still retain its recognizable form as a sofa, but in
fantasy styles).

Abstract

Diffusion-based methods have achieved prominent suc-
cess in generating 2D media. However, accomplishing sim-
ilar proficiencies for scene-level mesh texturing in 3D spa-
tial applications, e.g., XR/VR, remains constrained, primar-
ily due to the intricate nature of 3D geometry and the ne-
cessity for immersive free-viewpoint rendering. In this pa-
per, we propose a novel indoor scene texturing framework,
which delivers text-driven texture generation with enchant-
ing details and authentic spatial coherence. The key insight
is to first imagine a stylized 360◦ panoramic texture from
the central viewpoint of the scene, and then propagate it to
the rest areas with inpainting and imitating techniques. To
ensure meaningful and aligned textures to the scene, we de-
velop a novel coarse-to-fine panoramic texture generation
approach with dual texture alignment, which both consid-
ers the geometry and texture cues of the captured scenes.
To survive from cluttered geometries during texture prop-
agation, we design a separated strategy, which conducts
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texture inpainting in confidential regions and then learns
an implicit imitating network to synthesize textures in oc-
cluded and tiny structural areas. Extensive experiments
and the immersive VR application on real-world indoor
scenes demonstrate the high quality of the generated tex-
tures and the engaging experience on VR headsets. Project
webpage: https://ybbbbt.com/publication/
dreamspace.

1. Introduction
In our childhood, we might have imagined the world we

live in with fantasy looking that follows real-world shapes
but beyond reality, such as starry skies on the rooftops, beds
with fancy adventurous decorations, or even virtual win-
dows through which to gaze upon the galaxy. Nowadays,
with the advancements of HMD devices, we have the ability
to visually immerse ourselves in virtual scenes with 6-DoF
rendering, which opens up the possibility of experiencing
scene assets with various stylized textures. Consequently, a
following question is: can we realize the dream of generat-
ing fully-immersive scenes with fantasy styles from reality,
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i.e., by giving text prompts, and automatically transferring
textures of our living room with enchanting and meaningful
details?

Over the past few years, enormous efforts have been
paid in the field of scene stylization (or texture synthe-
sis) [2, 5, 16, 18, 22, 40, 56]. However, existing methods
either only transfer low-level styles without semantically
meaningful textures (e.g., imitating Van Gogh’s paintings
instead of generating recognizable visual elements [22,56]),
or focus on texture editing [2,18] on 3D objects with NeRF
representation [31] but struggle to generate high-fidelity
textures for the whole space and achieve real-time render-
ing on HMD devices. Very recently, with the advance-
ments of diffusion-based generative methods (e.g., Stable
Diffusion [41]), it has become feasible to synthesize im-
ages based on text prompts with pleasant looking while
maintaining the same scene structure by adding depth/edge
conditions [33, 57]. Nevertheless, since perspective image
views only convey a partial appearance of the entire 3D
scene, it’s non-trivial to automatically project it to 3D scene
geometries. As a result, it usually requires skillful artists
to run multiple generations and laboriously perform texture
painting with 3D modeling software (e.g., Dream-Texture
for Blender Addon [25]).

In this paper, we propose a novel text-driven indoor
scene texturing framework, which allows to generate mean-
ingful and appealing mesh textures of real-world scenes
based on text prompts, while preserving semantic consis-
tency and spatial coherence (e.g., the furniture still looks
like its own types but in different fashions, as shown in Fig.
1). Unlike the object texturing task [5, 40] that synthesize
textures from multiple perspective views towards the object,
for scene-level tasks, we should consider the panoramic se-
mantics and consistency in a unified process to ensure a
seamless texturing result (see Sec. 4.2). To this end, we pro-
pose to texture scene meshes in a top-down manner, where
we first generate an initial panoramic texture at the central
viewpoint in a panoramic diffusion process and then propa-
gate the panoramic texture to the rest of the regions. Mean-
while, both the initial and the propagated textures will be
baked into the resulting meshes through UV maps, which
can be uploaded into a commodity-level HMD device for
immersive VR applications (see the supplementary video
for more details).

However, it is nontrivial to design such a scene-level
mesh texturing framework in a top-down panoramic man-
ner, since there are several challenges when texturing on
unstructured and cluttered real-world scenes. 1) To display
sharp and visually comfortable content on HMD devices,
the desired panoramic texture should be high-resolution,
free of tiling seams to avoid the sense of spatial fragmenta-
tion, and spatially coherent following equirectangular pro-
jection (e.g., all the furniture and room structure such as

floor and ceiling should be recognizable and not distorted).

To fulfill all the above demands, we employ a coarse-to-
fine panoramic texture generation strategy, where we first
generate a low-resolution panorama with a panoramic dif-
fusion model to ensure proper panoramic scene structure,
and then upscale it following equirectangular seam fixing
to achieve seamless and high-resolution textures. 2) Even
with depth or edges as conditioning input [33, 57], exist-
ing diffusion models cannot ensure adequate alignment be-
tween geometry and textures, and such misalignment would
inevitably introduce noticeable texture projection artifacts
(see Sec. 4.4 and Fig. 10). To address this issue, we
propose a novel dual texture alignment strategy, where the
style-first textures and the alignment-first textures would be
both generated and blended according to viewpoint depth
changes. In this way, we effectively mitigate the geometry-
texture misalignment while preserving visually appealing
generated styles. 3) Real-world reconstructed scenes often
have intricate occlusions when observing from perspective
views (e.g., narrow spaces such as the gap between the wall-
mounted TV and the wall, or floor areas under the sofa, or
thin structures like plant leaves or legs of furniture), mak-
ing it challenging for viewpoint-based texture painting to
effectively cover every aspect of the scene. To this end, we
design a holistic texture propagation pipeline. Specifically,
for regions free of occlusion from the new viewpoint, we
employ diffusion-based [41,57] confidential texture inpaint-
ing. Then, we leverage a coordinate-based implicit texture
imitating network, which learns style mapping from real-
world colors to stylized colors, and imitates textures for the
rest of uncovered regions. By cooperating inpainting and
imitating techniques, our method smoothly propagates ini-
tial panoramic textures to the whole space while preserving
spatial coherence.

We summarize the technical contribution as follows.
First, we propose a novel scene-level mesh texturing frame-
work in a top-down panoramic manner, which allows users
to generate engaging UV textures of real-world scene re-
constructions based on text prompts. Second, we develop
a coarse-to-fine texture generation strategy to ensure the
correct perspective and high resolution, and a dual tex-
ture alignment mechanism to alleviate geometrical mis-
alignment without compromising style quality. Moreover,
to cope with the cluttered real-world geometries, we de-
sign a holistic texture propagation paradigm with inpainting
and implicit imitating techniques, which smoothly paints
the entire space with coherent textures. Finally, extensive
experiments on real-world datasets demonstrate that our
method achieves significantly better scene-level mesh tex-
turing quality than existing methods, which also brings im-
mersive and impressive VR experiences when visualized on
HMD devices.
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2. Related Works
Scene-Level Stylization. In the field of computer vision
and graphics, neural network-based stylization has been
studied for years. Starting from Gatys et al.’s work [14],
early literature [8, 15, 24] mainly requires a style image as
a reference, and optimize a perceptual loss or use a model
to perform style transfer in 2D image domain [24, 26, 28,
52]. With the quick development of neural rendering tech-
niques [31], such style transfer pipeline has soon be de-
ployed into 3D space domain [6,7,11,23,56], which mainly
inherit the perceptual loss paradigm to optimize the appear-
ance of the view-dependent color field while freezing the
density field. To obtain meaningful stylization results, re-
cent works also use larger-scale external data-driven priors
(e.g., CLIP model [39]) for style transfer (or editing) [2,18],
which achieves stylized results that also follow human lan-
guage prompts, but these works mainly cannot be scaled
to large indoor scenes that allow immersive room touring.
However, during the rendering stage, NeRF-based methods
typically require extensive computation due to network in-
ference, which is not computational-friendly for all-in-one
HMD devices. Hence, another line of works tries to di-
rectly stylize upon the scene meshes by hand-crafted anno-
tation [12, 19] or upon the point cloud [4]. For example,
Text2Scene [49] optimizes scene-level mesh textures with
differentiable local fields to satisfy users’ prompts, but re-
quires structured CAD scenes, which is not applicable for
real-world scene reconstructions. StyleMesh [22] proposes
to operate neural style transfer on the parameterization of
UV textures, which produces stylized mesh that can be fea-
sibly rendered on standard graphics pipeline, but only trans-
fer appearance up to global styles without strong seman-
tic meaning (e.g., mimicking artists’ stroke), which cannot
ensure sufficient visual comfort when displayed in HMD
devices. Therefore, existing works for scene-level styliza-
tion either are not applicable for immersive indoor scene-
scale scenarios with affordable computation on HMD de-
vices [2,18], cannot support semantic meaningful style gen-
eration [6, 7, 11, 22, 23, 56], or require well-structured CAD
model instead of real-world reconstruction [49].
Diffusion-based Mesh Texture Generation. Very re-
cently, due to the emerging usage of large vision-language
model in vision tasks, the generative methods [1, 10, 13, 20,
30, 32, 34, 42, 54] have gained tremendous develop in the
past few months. Among them, diffusion-based generative
models have attracted lots of attention in various modalities,
such as high-resolution image generation [37, 41], human
voice generation [27], or even 3D model generation [21,38].
Notably, the open-source of Stable Diffusion also sparks a
trend of AI-assisted creation throughout the whole commu-
nity, which also derives a lot of following modules upon
its pre-trained weights, such as injecting various controlling
conditions [33, 57], video generation [17], high-fidelity im-

age inpainting [48] or even object texturing or mesh gener-
ations [5,29,40]. For example, Text2Room [21] uses Stable
Diffusion to generate indoor 2D views, and lifted into 3D
spaces with depth prediction and consecutive image inpaint-
ing, which enables to build up a novel indoor scene based
on users’ text prompts, but it struggles to produce clean tex-
tures or processes on a pre-captured scene reconstruction.
Therefore, for the mesh texture generation task with given
targeting meshes, there are mainly two different pathways.
One is to use Score Distillation Sampling losses (SDS loss)
from DreamFusion [38], which trains a generative NeRF by
extracting supervisory signals from the denoising process
of diffusion model upon the NeRF rendered views. Inspired
by DreamFusion, LatentNeRF [29] proposes to use SDS
loss to paint textures on the exact mesh with the unwrapped
UV texture map. While the application of SDS over the
mesh texturing task is technically plausible, it cannot unlock
the full generative ability of the diffusion model, which re-
sults in much blurry rendering when compared with 2D do-
main image synthesis [40, 41, 45]. Hence, another possible
route is to first generate 2D textures [5, 25, 40] that align
with 3D geometry using depth-aware conditioning tech-
niques [33,57], and then project it into UV textures. For ex-
ample, the popular Blender addon Dream-Texture [25] uses
customized geometry node to render depth from interac-
tive modeling views, and then projects the textures through
the view frustum. Nevertheless, since a single 2D view-
point only reflects partial textures of a complete 3D model,
Dream-Texture cannot correctly justify where to paint and
simply projects textures through the entire mesh (i.e., back
face with the same textures as the front face), which re-
sults in incorrect textures when viewing from 360◦ view-
points. To tackle the challenge of 2D-to-3D texturing am-
biguity, TEXTure [40] and Text2Tex [5] propose to synthe-
size multi-view textures from orbiting viewpoints aiming
at the object center, and use depth-aware texture inpaint-
ing to fill the new unpainted areas while preserving consis-
tent texture from the partially painted area. However, such
multi-view texturing pipeline assume the object can be fully
observed without tiny / far-away structures or complex oc-
clusions, which cannot be satisfied in real-world cluttered
scenes. Therefore, recent work MVDiffusion proposes to
leverage 3D correspondence in an attention mechanism dur-
ing the multi-view diffusing process, which achieves multi-
view consistency to a certain degree but still cannot achieve
satisfactory mesh texturing results (see Sec. 4.2). Another
concurrent work RoomDreamer tries to generate textures
in cubemap format and also uses inpainting to fill the rest
areas, but it still cannot ensure sufficient spatial coherence
and also lacks proper ways to handle the unobserved regions
(e.g., gap between the desk and the floor). On the contrary,
we propose to generate 360circ textures in the panoramic
space with a coarse-to-fine panoramic diffusion process,
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Figure 2. Framework of DreamSpace. Given a reconstructed real-world scene and users’ text prompts, we first generate a high-resolution
and geometrically aligned panoramic texture at the central viewpoint. Then, we propagate the textures into the rest regions with holistic
texture propagation, where the confidential texture inpainting fills textures at the large confident areas and the implicit texture imitating
predicts colors at the tiny areas. The resulting scene meshes with baked stylized UV textures can be uploaded into HMD devices for
immersive VR touring.

and then propagate it into the rest region with inpainting and
imitating, which both achieves texture synthesis with strong
semantic meaning and takes into account the occlusion and
tiny structures in real-world scene reconstruction.

3. Method

We introduce DreamSpace, a novel text-driven frame-
work for generating semantically meaningful and spatial
coherence scene textures for real-world indoor scenes. As
demonstrated in Fig. 2, we texture the scene in the
panoramic space with a top-down fashion, where we first
generate a stylized 360◦ view from the central viewpoint,
and then propagate it to the entire scene. To generate the
high-resolution panoramic view with appropriate structure
relationship and consistent semantic meaning, we design
a coarse-to-fine panoramic texture generation process con-
ditioned on reconstructed geometry and texture cues (Sec.
3.1), and a dual texture alignment strategy to alleviate tex-
ture misalignment to the geometry (Sec. 3.2). Once the
initial stylized panoramic view is generated, we project tex-
tures to the visible area through UV maps, and then propa-
gate it with confidential texture inpainting for visible areas
at new viewpoints and implicit texture imitating for tiny ar-
eas, so as to obtain a fully stylized scene mesh. Note that
our method does not rely on volumetric rendering with any
geometry approximation [31]. Therefore, the baked result-
ing mesh is exactly what you see during the generation, and
is compatible with standard rendering pipelines, which then
can be easily uploaded and experienced in all-in-one HMD
devices without PC streaming.

3.1. Panoramic Texture Generation

Generating in panoramic space. Different from previous
object mesh texturing methods [5, 21, 40] that repeatedly
generates multiple perspective views towards object cen-
ters, we urge that the scene-level texture generating task
should consider the full 360◦ view of the scene as a whole,
i.e., generating in panoramic texture space (a.k.a. through
equirectangular projection), rather than using multiple per-
spectives [5, 40] or cubemaps [45] with perplexing view-
point specific prompts (e.g., “floor/ceiling in a single color”
when looking at the floor [21]). To this end, given a user
prompts P and the reconstructed real-world scene (i.e., a
textured scene mesh), our first attempt is to generate a vivid
and high-resolution stylized panoramic view that observes
the scene from a central viewpoint. While it is plausible to
use a depth-aware latent diffusion model (LDM) [33,41,57]
to generate textures that fit to the observed scene depth, we
find it still faced with several challenges. First, existing
generic or LoRA-fine-tuned LDMs cannot ensure accurate
equirectangular projection, which results in distorted tex-
ture when projecting back to the mesh. Second, the desired
panoramic texture should be high-resolution (e.g., 2K reso-
lution or more) and free of tiling seams to guarantee accept-
able visual quality in immersive VR applications, which is
also not directly feasible for texture generation methods.
Coarse-to-fine conditioned generation. To handle the
challenges above, we design a coarse-to-fine conditioned
generation paradigm, where we first generate a low-
resolution panoramic view with proper spatial structure,
and then upscale it to the high resolution. Specifically,
we first train a panoramic diffusion model by fine-tuning
generic LDM [41] with carefully filtered equirectangular
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projected images (see the supplementary material for more
details). Next, for an input textured scene mesh, we ren-
der the panoramic colored image IP with distance map D
(i.e., distance from camera center c to mesh surface) at the
scene center, and feed them together with user’s prompts P
to the fine-tuned LDM with multi-condition controls [57] to
obtain stylized image ÎS , as:

ÎS = Fc(P ;D, E(IP)) (1)

where Fc is the LDM with multi-conditioning, E(IP) is the
soft edgemap extracted with Su et al.’s work [47]. During
the inference, we adapt the asymmetric tiling strategy [51]
by hijacking all the 2D convolutions of the UNet with hor-
izontal circular padding for the last 60% timestamps, so as
to make sure the left and right side of the equirectangular
image can be continuous (e.g., maintaining the wall and
the furniture to keep the same tone and continuous patterns
on both sides). Then, we utilize tiled diffusion [3] with a
generic LDM to upscale the ÎS into ÎSL, which produces 3
times larger panoramic images with extra rich details.
Equirectangular seam fixing. During the upscaling stage,
we find that the tiled upscaling strategy would inevitably
break the equirectangular traits of the images (i.e., patterns
become no longer tiling along the horizontal direction, and
the top and lower part of the panoramic are not the cor-
rect stretching follows equirectangular projection), primary
due to the reason that each processed tile is agnostic to the
whole perspective knowledge. Therefore, we also conduct
inpainting on the top/down polar and left-right tiling side
of the image. Specifically, for the top/down polar, we un-
wrap the panorama to the upward and downward perspec-
tive view and inpaint the central disk area, and then warp
it back. For the horizontal tiling seam, we roll the half im-
age along the x-axis and inpaint the middle part that covers
both left-right sides of the panorama. So far, we can ob-
tain a high-resolution stylized panoramic image that satis-
fies equirectangular projection and also maintains semantic
coherence.

3.2. Dual Texture Alignment

Dilemma of stylization and alignment. Although using
depth or hedges as conditional control can effectively di-
rect the LDM to produce somewhat consistent textures to
the target mesh [25, 33, 57], we find that in scene-level tex-
turing tasks, such alignment is not sufficient since the ge-
ometry of the real-world scenes is generally much more
complicated than single objects. One plausible workaround
might be directly denoising with moderate or small noises
upon real image views (a.k.a. LDM’s image-to-image mode
with lower denoising strength). However, due to the incom-
plete denoising process, such a method would generally re-
sult in blurry images or unsatisfactory styles. Therefore, we
are faced with a dilemma that the visually appealing view-
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Figure 3. Overview of dual texture alignment. To miti-
gate geometry-texture misalignment, we first synthesize style-first
panorama and align-first panorama, and then blend these dual
textures according to depth edge detection, which brings aligned
panoramic textures while preserving visually appealing stylized
details.

point stylization and perfect geometric alignment cannot be
achieved together at one time.
Alignment with dual texture blending. To solve the
dilemma, we propose to break the stylized panoramic tex-
ture generation in a dual process, and then fuse the dual
textures in a geometry-aware manner, as demonstrated in
Fig. 3. For brevity, we named these dual textures style-
first panorama and align-first panorama (see the middle part
of Fig. 3 (a)), where the first one is synthesized in a way
as introduced in Sec. 3.1 which ensures high-quality styles,
and the second one is synthesized with a customized aligned
diffusion process that tends to align the original scene more
strictly while maintaining a similar style. Specifically, for
generating align-first panorama ÎA, we start by denoising on
the real-world reference panorama but utilize multi-control
techniques [57] , as:

ÎA = Fc(P ; C(IP), T (IS)), (2)

where C(IP) is the canny edge control that enforces align-
ment, and T (IS) is the tile control [57] that injects styles
from the style-first panorama. To make the same size as
ÎSL, we upscale the ÎA into ÎAL with Wang’s work [53],
which empirically would not introduce noticeable tiling
seams. Note that we do not need this panorama to be per-
fectly stylized (which in practice is noticeably blurry than
the style-first one, as shown in Fig. 3 (a)). Then, we deter-
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mine the pixel areas for blending the align-first panorama
with the style-first panorama. We observe that the mis-
alignment issue generally happens where the scene depth
changes evidently. Hence, we simply generate the blend-
ing mask by detecting depth edges from the panoramic
depth map following the dilation and blurring operations,
and then blend these dual textures with masked Poisson im-
age editing [36] (a.k.a. seamless cloning with the align-
first panorama as the source and style-first panorama as
the target). In this way, we can successfully mitigate the
geometry-texture misalignment while maintaining the de-
sired stylized details untouched (see Fig. 3(b), where the
edge of the black monitor and sofa are much better aligned,
while the stylized posters on the wall keep unchanged).

3.3. Holistic Texture Propagation

Panoramic texture projection through UV maps. Once
the initial stylized panoramic view is synthesized, we
project it to the visible areas through UV maps in the
panoramic space, as illustrated in Fig. 2 (the left column
of the holistic texture projection). In practice, we first ob-
tain scene coordinates x (3D position) for valid pixels p in
the corresponding UV map, as:

x = Interp(MapTex(TexCoord(p), {T})), (3)

where TexCoord(p) is the texture coordinate of each p, {T}
is the mesh triangles, MapTex(·) maps the texture coor-
dinate into triangle vertices with barycentric weights, and
each x is barycentric interpolated from the triangles’ ver-
tices. Next, for each x, we compute ray directions from
the observing camera center c, and map the direction d =
c− x/∥c− x∥ to the panoramic space through equirectan-
gular projection. Then, for each x, we compare its observ-
ing distance to the rendered scene depth and determine if
the corresponding UV pixel p is visible from the viewpoint
with a distance threshold ϵ = 0.01. We go through all the
UV pixels with the visibility test and form an initial visibil-
ity mask Minit vis on the UV space, as:

Minit vis(p) =

{
1, if ∥p − x∥ < ϵ

0, otherwise.
(4)

Finally, we assign stylized panoramic colors to the UV
spaces according to the initial visibility mask Minit vis and
corresponding ray directions d, which produces the par-
tially textured scene (see the middle part of Fig. 2).
Separated strategies for confidential and tiny areas. By
projecting initial textures to the scene, the main impression
of the styled space has been already shaped, while there
are still some uncovered areas that need to be filled (e.g.,
the gray region at the partially textured mesh in Fig. 2).
Previous methods that use LDM for object mesh textur-
ing [5, 40] mainly rely on inpainting with various area se-
lection and masking methods (e.g., maintaining a trimap by
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Figure 4. Overview of implicit texture imitating. We first lift
colors from UV textures according to UV pixels’ scene coordi-
nates. Then, during the training stage, we train an implicit tex-
ture imitating network from visible stylized areas using lifted real-
world/stylized colors and coordinates. During the imitating stage,
we feed the real-world color and coordinates into the network to
imitate plausible textures in unseen areas.

TEXTure [40]), which aim to cover the entire mesh surface
as complete as possible. However, for real-world scene tex-
turing with cluttered geometries, solely relies on automatic
inpainting cannot ensure proper texturing for thin structures
(e.g., leaves and furniture legs) or severely occluded areas
(e.g., floor under the sofa or gaps between wall-mounted TV
and the wall) that cannot be observed from normal camera
positions. Besides, duplicated inpainting on the same area
of the mesh surface would also result in blurry appearance
or artifacts due to the inconsistency nature of LDM’s in-
painting result (as demonstrated in Sec. 4.2). Therefore,
we propose separate strategies for areas with different visi-
bility. Instead of conducting inpainting multiple times, we
only inpaint at the confidential areas (i.e., areas that is def-
initely free of occlusion) in very few viewpoints (e.g., only
two in our experiments) and then leverage a novel implicit
texture imitating network to smoothly fill the rest of areas
with plausible appearance.
Confidential Texture Inpainting. Given a partially tex-
tured mesh, we first perform confidential texture inpainting
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in the panoramic space as demonstrated in the middle part
of Fig. 2. During this procedure, we do not aim to fill ev-
ery aspect of the space, but only cover the confidential areas
that are totally free of occlusion when observing from new
viewpoints, where the viewpoint can be selected by SfM
poses with farthest point sampling or interactive user selec-
tion. To begin with, for each viewpoint, we first determine
the panoramic inpainting mask Minp from the new camera
poses. Practically, we reuse the UV-space initial visibility
mask Minit vis by regarding it as the UV texture, and render
the panoramic image on the current viewpoint, and then per-
form dilation and blurring to the image to obtain the Minp.
We then leverage depth-aware inpainting LDM [41,57] Finp
to synthesis masked areas, as:

Îinp = Finp(P, ÎM;D,Minp), (5)

where ÎM is the rendered panoramic image with partially
textured mesh, Îinp is the inpainting output image. Note that
the inpainting results Îinp will not be fully projected into the
stylized UV texture, but only retain confidential areas by
UV space masked filtering. More specifically, we design
three UV-space mask filters that ensure a confidential tex-
ture projection. First, we filter inpainting areas with abrupt
depth changes using a depth edge filtering mask Mdep edge,
which can be constructed by assigning the UV mask with
panoramic depth edge detection as introduced in Sec. 3.2.
Second, we consider the surface normal and distances by
rejecting small grazing viewing angles (10◦) or too far sur-
face points (distance larger than 2.5 meters) to form a safe
viewing mask Msafe view, which is constructed by calculat-
ing barycentric interpolated normal vectors from vertex nor-
mal for each valid UV pixel along with the scene coordi-
nates. Third, we perform visibility test on the inpainting
views with a similar formulation as Eq. (4), which con-
structs the inpainting visibility mask Minp vis. We combine
all the above masks to achieve a confidential texture pro-
jecting areas in UV space, as:

Mconf = Mdep edge ∩Msafe view ∩Minp vis, (6)

where Mconf is the combined confidential mask. Note that
all the masks are constructed in UV space instead of a cer-
tain camera perspective or panoramic view, which avoids
the influence of viewpoint-specific occlusion. We assign
inpainting panoramic texture into the stylized UV texture
with the mask Mconf, which further fills the partially styl-
ized scenes with more textures.
Implicit Texture Imitating. To complement the unob-
served or unpainted areas for scene-level mesh texturing,
we design a novel implicit texture imitating mechanism. As
demonstrated in Fig. 4, the goal of the texture imitating is to
learn the style mapping from the partially stylized scenes,
and then smoothly predict plausible texture for unseen ar-

eas. In practice, we first lift real-world colors CR and styl-
ized colors CS from the corresponding UV textures into the
scene coordinates x (see Eq. (3) and Fig. 4 (b)). During the
training stage (see Fig. 4 (c)), we learn an implicit imitating
network FImit (i.e., a coordinate-based MLP), which gives
the input as scene coordinate x and real-world colors CR

from the partially textured scenes, and is supervised by ex-
isting visible stylized colors CS with L2 loss, as:

Limit = ∥ĈS−CS∥2 ,where CS = FImit(γ(x),CR), (7)

where γ(·) is the positional encoding [31], and ĈS is the
predicted imitating color. Then, during the imitating stage
(see Fig. 4 (d)), we feed the network with all the valid UV
pixels’ scene coordinates x and real-world colors CR to
predict the imitated colors ĈS . As visualized in Fig. 4 (a),
the uncovered areas in the stylized scene can be smoothly
filled after the imitating while also preserving spatial coher-
ence (e.g., the pillows and the bedsheet are faithfully pre-
dicted as blue and white textures). Finally, we fuse the im-
itated colors into the partially textured meshes through the
accumulated visibility mask Maccu (by combing Minit vis and
all the Minp vis), which produces the fully stylized scenes
with baked textures, as demonstrated in the right part of Fig.
2.

4. Experiments
In this section, we first compare our framework with ex-

isting methods on the generative scene-level mesh texturing
task (Sec. 4.2) on real-world indoor scene datasets. Next,
we analyze the necessity of panoramic space texture syn-
thesis by comparing it with the cubemap space (Sec. 4.3).
Then, we perform ablation studies on the design of our tex-
turing framework (Sec. 4.4). Finally, we build up an im-
mersive VR application by uploading fully textured scenes
into the HMD devices (Sec. 4.5).

4.1. Datasets

DreamSpot Dataset. To demonstrate the applicability in
real-world indoor scenes, we create a new dataset named
DreamSpot, which contains three scenes that cover sev-
eral typical scenarios in daily lives (i.e., meeting room, liv-
ing room, and bedroom, where the first two are used for
comparison). Specifically, we use an iPhone to capture
RGB images of the room and then use out-of-box SfM [43]
with MonoSDF [55] for geometric reconstruction, and uti-
lize texture mapping [35] to obtain scene meshes with real-
world UV textures.
Replica Dataset. We also use three real-world scenes from
the Replica dataset [46] to evaluate our method, i.e., Room
0, Room 1, and Office 0. Since the original Replica dataset
uses a customized shader for HDR rendering, which is
not directly compatible with textured mesh-based pipelines
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DreamSpot Meeting Room

Ours

Original Scene StyleMesh

TEXTureMVDiffusion Ours

StyleMesh

TEXTureMVDiffusion

Original Scene

DreamSpot Living RoomGalaxy Theme, … Cyberpunk theme, …

Figure 5. We compare our scene-level mesh texturing with StyleMesh [22], MVDiffusion [50] and TEXTure [40] on our captured
DreamSpot dataset, where the figures include the overview of textured scene meshes and the corresponding rendered views.

Replica Room 0

Original Scene StyleMesh TEXTureMVDiffusion

Replica Room 1

Replica Office 0

Ours

Original Scene StyleMesh TEXTureMVDiffusion

Original Scene StyleMesh TEXTureMVDiffusion

Ours

Ours

Secret Garden, …

Tropical Paradise, …

Minimalist Zen, …

Figure 6. We compare our scene-level mesh texturing with StyleMesh [22], MVDiffusion [50] and TEXTure [40] on the Replica dataset,
where the figures include the overview of textured scene meshes and the corresponding rendered views.

such as our method and StyleMesh [22]. Hence, we first
pre-process these scenes by baking the appearance into un-
wrapped UV textures with Blender.

4.2. Comparison on Generative Mesh Texturing

Experiment setting. We first evaluate our method by com-
paring it with SOTA mesh texturing (or stylization) works
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Methods Quantitative Metrics User Study

CLIP Score ↑ Aesthetic ↑ Correctness ↑ Quality ↑
StyleMesh [22] 0.184 4.812 2.68 2.76
MVDiffusion [50] 0.174 4.263 1.37 1.49
TEXTure [40] 0.187 5.265 2.57 2.20
Ours 0.214 5.771 3.38 3.55

Table 1. We perform quantitative evaluation and user studies on
the rendered views of textured mesh for StyleMesh [22], MVDif-
fusion [50], TEXTure [40] and our method.

on the scene-level meshes both quantitatively and qualita-
tively. Specifically, given a reconstructed textured scene
mesh and user-defined text prompts (e.g., “galaxy themes”,
or “secret garden”), our task is to synthesize textures that
fit the scene geometry while following the semantic mean-
ing of the prompts. We choose the UV texture stylization
method (StyleMesh [22]), multi-view consistent 2D diffu-
sion model (MVDiffusion [50]), and LDM-based depth-
aware mesh texturing method (TEXTure [40]) as competi-
tors. Note that not all methods can directly process on
meshes or leverage existing textures, i.e., StyleMesh and
our method use real-world textures and geometry as input,
while TEXTure and MVDiffusion can only use pure ge-
ometry or 3D correspondence as guidance, and MVDiffu-
sion also uses TSDF fusion to fuse generated images into
colored meshes. For StyleMesh, since it uses perceptual
loss for style transfer and requires a reference style image,
we additionally use LDM [41] with text prompts to gen-
erate a style image as its input. During the texturing pro-
cess, all the other methods perform optimization or genera-
tion in perspective views, while our method uses panoramic
views. Therefore, to make a fair comparison, we manu-
ally designed a perspective camera scanning trajectory for
each scene with the best effort to cover the whole space
while avoiding being too close to the mesh surface. Once
the mesh texturing is finished, we render the textured mesh
into multiple perspective views with OpenGL, which will
be used for metric comparisons and user study.
Quantitative comparison. For quantitative comparison,
we use CLIP Score [39] to measure the matching degree be-
tween rendered views and the given text prompts. Besides,
we also use aesthetic scoring introduced by LAION [44] to
measure the aesthetic quality of the generated images, since
it has been proven to be more authentic than FID for recent
diffusion-based generative methods [37]. As presented in
Fig. 1, our method consistently achieves the highest scores
in both metrics, which demonstrates that our synthesized
texture follows the given text prompts better and also main-
tains high quality when rendered from perspective views.
Qualitative comparison. We visualize the qualitative com-
parison results in Fig. 5 and Fig. 6, where we both
exhibit the overview of the fully textured meshes and

Panoramic Tex. Cubemap Tex.

(a) Scene Reconstruction of DreamSpot Bedroom

(b) Texture Synthesis in Different Spaces

(c) Rendered View of Stylized Meshes

Texturing with Panoramic Tex. Texturing with Cubemap Tex.

Figure 7. We compare mesh texturing with textures generated
from different spaces (i.e., panoramic texture or cubemap texture).

the corresponding perspective mesh rendering views. For
StyleMesh, since it utilizes VGG perceptual loss [24] for
UV texture style transfer without high-level semantic pri-
ors such as CLIP [39], it generally cannot synthesize novel
and meaningful textures and behaves more like mimick-
ing strokes and color tones of the given style image. For
example, in the “galaxy theme” of the meeting room (see
Fig. 5), StyleMesh mainly turns the environment into dark
galaxy tones while failing to generate rich galaxy textures.
For MVDiffusion, though it leverages corresponding at-
tention module to preserve multi-view consistency by ex-
tracting 3D correspondence from camera poses and scene
depths, we find the resulting synthesized images cannot ful-
fill the requirement of scene-level texturing task due to the
insufficient consistency, which results in blurry appearance
in most of the cases (e.g., for both cases in Fig. 5, the
boundary of stylized television is much blurrier than ours).
For TEXTure, because its repetitive inpainting strategy is
mainly designed for object meshes, we find it struggles to
generate satisfactory textures when conducting on scene-
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(c) with Coarse-to-Fine Upscaling (d) w/o ERP Seam Fixing(b) w/o Coarse-to-Fine Upscaling (e) with ERP Seam Fixing(a) Stylized Scene

DreamSpot
Livingroom in Galaxy

DreamSpot
Meeting Room in Zelda

Figure 8. We perform ablation studies of the coarse-to-fine strategy during the panoramic texture generation, including the coarse-to-fine
upscaling and equirectangular seam fixing.

level meshes (e.g., in Fig. 6 Replica Office 0, it produces
repetitive artifacts on the walls) and also fails to project tex-
tures into scenes with cluttered geometry (e.g., pieces of
unpainted areas in Fig. 6 Reolica Room 0). To avoid poten-
tial visual discomfort, we have slightly dimmed the results
of TEXTure in Fig. 5 and Fig. 6. From the analysis above,
we believe that relying on perspective view for generating
indoor scene textures is fairly difficult to obtain spatial co-
herent and consistent results, and also struggles to cover ev-
ery visible area of real-world complex scenes. By contrast,
our method uses panoramic scene texturing, which not only
preserves semantic meaning (e.g., furniture still looks like
furniture, but in fantasy styles, and the generated floor tex-
ture is free of excessive details or severe artifacts), but also
creates novel and enchanting textures by faithfully project-
ing generated textures into the meshes (e.g., galaxy on the
floor in Fig. 5 meeting room galaxy theme, vibrant grass
decorations in Fig. 6 Room 0 “secret garden”, and the im-
pressive landscape poster in Fig. 6 Room 1 “tropical par-
adise”), while also properly fills unseen spaces (e.g., areas
under the chair in Fig. 6 Office 0 “minimalist zen”) thanks
to texture propagating techniques.
User study. We also conducted a user study to compare our
method with others on the generated mesh textures of the
DreamSpot and Replica datasets. Specifically, we ask 20
users to sort the rendered views from textured meshes gen-
erated by methods in two aspects, i.e., image-text matching
correctness and the perceptual quality, and assign the scores
by their ranking (i.e., with a score of 4 for the ordered best
one and a score of 1 for the last one). As reported in Fig.
1, we achieve the most preferences among all the methods
by a large margin, which highlights the impressive visual
quality and image-text matching degree of our method.

4.3. Panoramic Texture vs. Cubemap Texture

We suggest that, to pursue global consistency and spa-
tial coherent for the scene-level mesh texturing task with
the LDM diffusion process, the texture should be first syn-
thesized in a panoramic space with equirectangular projec-

(a) Initial Pano. Space Vis.

Before

Ref. Depth

After
(b) Rendered Mesh Vis.

Figure 9. We inspect the efficacy of dual texture alignment on the
initial panoramic space and rendered mesh.

tion, rather than using multi-view fashion (e.g., as shown in
Sec. 4.2) or cubemap spaces (e.g., RoomDreamer [45]).
To prove this, we also compare our panoramic texturing
pipeline with a cubemap-based pipeline, where the cube-
map is directly generated by depth-aware LDM following
Song et al.’s work [45]. As demonstrated in Fig. 7, due
to the discontinuity and unclear spatial semantic meaning,
cubemap textures tend to produce excessive details on top
faces, and also fail to make a smooth content transition
on disconnected edges (see Fig. 7 (b)), which results in
spurious textures on the rooftop and mixed textures on the
chair (see Fig. 7 (c)). By contrast, generating textures in
panoramic space like ours not only achieves better spatial
structural meaning (i.e., let the fine-tuned LDM know that
the upper image area is the ceiling and the bottom area is
the floor), but also ensures spatial continuity and coherence
(e.g., semantic meaningful galaxy ceiling and white chairs
with clean textures in Fig. 7).

4.4. Ablation Studies

Coarse-to-fine generation. We first analyze the coarse-to-
fine strategy in panoramic texture generation (Sec. 3.1).
Specifically, we ablate the coarse-to-fine upscaling and
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(c) w/o Imit.

(d) Imit. w/o Inp. (e) Imit. + Inp. 1 Views (f) Imit. + Inp. 3 Views

(b) Imit. + Inp. 2 Views(a) Stylized Scene
(Default)

Figure 10. We analyze the effectiveness of imitating and inpaint-
ing in holistic texture propagation.

equirectangular seam fixing for the initial panoramic tex-
ture generation. As shown in Fig. 8 (b) and (c), by en-
abling the coarse-to-fine upscaling technique, we can ob-
tain textures with richer details (e.g., much cleaner galaxy-
style poster, seeing clearer winding landscape path from the
window), which is essential for satisfactory immersive VR
experience as it amplifies the details of the scene. By em-
ploying equirectangular seam fixing (see Fig. 8 (d) and (e)),
we can significantly remove tiling seams on the projected
mesh textures (e.g., seams on the window and the roof are
gently removed), which ensures the spatial consistency for
the synthesized panoramic texture.
Dual texture alignment. We then study the necessity of
the dual texture alignment strategy (Sec. 3.2). To clearly
demonstrate the efficacy, we both visualize the panoramic
space alignment and the resulting meshes in Fig. 9. It is
clear that LDM tends to produce textures where the bound-
ary of the object cannot be aligned to the real-world ge-
ometry (e.g., the highlighted contour of the green sofa, and
the leaves of a potted plant in Fig. 9 (a)), while dual tex-
ture alignment would mitigate such misalignment at the
panoramic space. After projecting textures to meshes fol-
lowing Sec. 3.3 with carefully visibility test, we still ob-
serve the artifacts by misalignment (e.g., dirty textured
walls caused by erroneously projecting leaves’ textures on
the wall in the first row of Fig. 9). By introducing dual tex-
ture alignment for panoramic textures, we further alleviate
the misaligned artifacts caused by texture projection (e.g.,
clean textured walls in the second row of Fig. 9).
Texture propagation with inpainting and imitating. We
also inspect the necessity of the texture inpainting and im-
itating techniques (Sec. 3.3) for panoramic texture projec-
tion in Fig. 10. By default, we enable texture imitating

with two viewpoint inpainting (see Fig. 10 (b)). To ab-
late the texture imitating, we use a see-through texture pro-
jecting similar to Dream-Texture [25] to avoid texturing va-
cancy, where all the valid UV pixels would be assigned to
a color through equirectangular projection. As shown in
Fig. 10 (c), the texture projection without imitating would
inevitably introduce erroneous texturing results, e.g., much
chaotic appearance of the desk and duplicated round table
on the floor in the first row of Fig. 10 (c). When ablating
texture inpainting techniques, the framework loses knowl-
edge of what the occluded area should look like and only
guesses the occluded appearance with texture imitating. As
shown in Fig. 10 (d), our method still achieves plausible
texturing results without noticeable artifacts, but might lose
some semantic meaningful content such as the blue glow at
the back of the monitor (the last row of Fig. 10 (d)). By en-
abling the inpainting and imitating together, we can achieve
texturing results with both clean textures at cluttered geom-
etry (e.g., the first row of Fig. 10 (e)) and novel content at
inpainted areas (e.g., the fancy blue glow of the monitor at
the last row of Fig. 10 (d)).
Number of inpainting viewpoints. We finally analysis on
the number of inpainting viewpoints in Fig. 10. Different
from previous works that use repetitive inpainting on per-
spective views to cover all the visible surfaces of the mesh,
our method follows the principle that generates an informa-
tive panoramic texture and then propagates it through in-
painting and imitating techniques. Therefore, we don’t rely
on too many inpainting views, since inpainting itself cannot
always produce reasonable images especially when observ-
ing occluded areas from small grazing angles (e.g., small
gaps between the sofa and the floor). As shown in Fig. 10,
we don’t observe significant improvement when increasing
the number of inpainting views, as the first panoramic tex-
ture already endues sufficient appearance and overall im-
pression of the indoor scenes.

4.5. Immersive VR Application

Once the stylized texture has been generated for the
given scene mesh, we can directly place it into game en-
gines such as Unity and upload it to the HMD devices for
virtual touring. To further improve the immersive experi-
ence, as shown in Fig. 11, we also make transparent win-
dows on the user-defined region by assigning transparent al-
pha values on the baked UV images, where the UV space al-
pha mask is generated in a way similar to inpainting masks
(Sec. 3.3). Then, we pack the scene with an additional
generated panoramic skybox by an unconstrained version
of the panoramic diffusion model (i.e., the LDM in Sec. 3.1
that trained on broaden equirectangular projection images).
During the rendering, we use the generated panoramic sky-
box as the background and open the virtual window with
transparent UV textures. In this way, we can build up a fan-
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(c) Virtual touring in the dreamed bedroom while seeing the galaxy

(b) Input: panoramic Galaxy by 
unconstrainted pano. diffusion

(a) Input: stylized DreamSpot 
bedroom with transparent window

Figure 11. We build up a VR application by uploading textured
scene assets with transparent windows and generated skyboxes
into the HMD devices, which delivers an enchanting and im-
mersive VR experience by allowing 6-DoF free-viewpoint tour-
ing with teleportation (red dot on the ground) in the fully stylized
spaces.

tasy VR application, which allows users to enjoy the styl-
ized space with their familiar scene structure but totally dif-
ferent appearance, i.e., seeing the nebula from the virtual
window on a galaxy-theme bedroom. Please refer to the
supplementary video for the video recording of the immer-
sive VR application.

5. Conclusion

We have proposed a novel text-driven indoor scene
texturing framework, which enables to generate high-
resolution and semantic meaningful UV textures for real-
world scenes based on text prompts. The key insight of
our work is to first synthesize a stylized panoramic view of
the scene that already conveys a global consistent appear-
ance, and then propagate it to the rest regions. For texture
propagation, we design novel confidential inpainting and
implicit imitating techniques, which properly handle clut-
tered real-world geometry and maintain spatial coherence
for occluded areas or thin structures. The resulting stylized
textured mesh can be feasibly uploaded into HMD devices,
which delivers immersive VR experiences.
Limitations and future works. Despite the novel scene-
texturing capability provided by our method, it still has
some limitations. First, the panoramic texture synthesized
by our method already bakes the scene lighting effects,

which cannot support custom lighting or dynamic shad-
ows in the rendering pipeline. Second, to ensure high-
quality texturing and a completely immersive VR experi-
ence, our method requires the input reconstruction to in-
clude real-world textures, and also relies on the quality of
the scene reconstruction (e.g., incomplete scanned scenes
without a roof such as ScanNet [9] is not preferred). Third,
our method does not support extra large rooms (e.g., the-
ater, church) or outdoor spaces, as such scenarios might
need multiple partitioned stylized panoramas to fill the en-
tire scene. In the future, we plan to support PBR textur-
ing by fine-tuning LDM with PBR-based equirectangular
projections, which would be more compatible with modern
physically based rendering pipelines. Besides, we can also
incorporate our scene texturing pipeline with a visual po-
sitioning system, so as to align the stylized scene with the
physical real world on HMD devices, which could deliver
appealing MR experiences.
Acknowledgements. We thank Freepik for icons in the fig-
ures.
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