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Figure 1: Coin3D allows users to add 3D-aware control to the object generation using coarse proxies assembled from basic
shapes, enabling an interactive generation workflow with fine-grained part editing and responsive 3D previewing.

ABSTRACT
As humans, we aspire to create media content that is both freely
willed and readily controlled. Thanks to the prominent development
of generative techniques, we now can easily utilize 2D diffusion
methods to synthesize images controlled by raw sketch or desig-
nated human poses, and even progressively edit/regenerate local
regions with masked inpainting. However, similar workflows in
3D modeling tasks are still unavailable due to the lack of controlla-
bility and efficiency in 3D generation. In this paper, we present a
novel controllable and interactive 3D assets modeling framework,
named Coin3D. Coin3D allows users to control the 3D generation
using a coarse geometry proxy assembled from basic shapes, and
introduces an interactive generation workflow to support seamless
local part editing while delivering responsive 3D object preview-
ing within a few seconds. To this end, we develop several tech-
niques, including the 3D adapter that applies volumetric coarse
shape control to the diffusion model, proxy-bounded editing strat-
egy for precise part editing, progressive volume cache to support
responsive preview, and volume-SDS to ensure consistent mesh
reconstruction. Extensive experiments of interactive generation
and editing on diverse shape proxies demonstrate that our method
achieves superior controllability and flexibility in the 3D assets gen-
eration task. Code and data are available on the project webpage:
https://zju3dv.github.io/coin3d/.
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1 INTRODUCTION
As a child, we are born with the instinct to create things with our
imagination, i.e., building houses or vehicles using different Lego
bricks, or doodling pictures with pencils [Nath and Szücs 2014].
Yet only a few people learn drawing or modeling skills, which
eventually develop the ability to create qualified artworks. For-
tunately, the rapid development of generative techniques grants
everyone a chance to create fantasy content, i.e., using LLM for
automatic manuscripting [Radford et al. 2018; Wei et al. 2022] or
2D diffusion methods for text-to-image/video generation [Guo et al.
2023; Lugmayr et al. 2022; Rombach et al. 2022]. To enable the
controllability of the generative model, recent advances in 2D dif-
fusion (such as ControlNet [Zhang et al. 2023], T2I-Adapter [Mou
et al. 2023], SDEdit [Meng et al. 2021], and etc.) allow users to take
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depth, sketches or human poses to control the generation process,
enables iteratively editing designated region with inpainting and
re-generating mechanism. However, in the field of 3D asset genera-
tion [Poole et al. 2022], existing 3D generative methods still lack
controls for artistic creation. First, they are usually conditioned with
text prompts [Poole et al. 2022] or perspective images [Liu et al.
2023d,c,a; Long et al. 2023; Qian et al. 2023], which is not sufficient to
express 3D objects accurately. Second, when performing high-level
tasks such as generative editing [Cheng et al. 2023b; Haque et al.
2023; Kamata et al. 2023; Li et al. 2023a] or inpainting [Zhou et al.
2023], existing approaches usually require a significant amount of
time for reconstruction before previewing the editing operation.

Given this observation, we believe that a controllable and user-
friendly 3D assets generation framework should have these proper-
ties. (1) 3D-aware controllable: similar to a child stacking Lego
bricks and picturing the vivid appearance in its mind, a control-
lable 3D generation can be started by assembling basic shapes (e.g.,
cuboids, spheres, or cylinders), which serves as coarse shape guid-
ance for the detailed generation. Therefore, it reduces the difficulty
of 3D modeling for common users and also provides sufficient con-
trol over the generation. (2) flexible: the framework should allow
users to interactively composite or adjust local regions in a 3D-
aware manner, ideally as easy as image inpainting tools [Meng
et al. 2021]. (3) responsive: once the user’s editing is temporarily
finished, the framework should instantly deliver preview images
of the generated object from the desired viewpoints, rather than
waiting for a long reconstruction period. In this paper, we propose
a novel COntrollable and INteractive 3D assets generation frame-
work, named Coin3D. Instead of using text prompts or images as
conditions, Coin3D allows users to add 3D-aware conditions into a
typical multiview diffusion process in the 3D generation task, i.e.,
using a coarse 3D proxy assembled from basic shapes to guide the
object generation, as illustrated in Fig. 1. Based on proxy-guided
conditioning, Coin3D introduces a novel generative and interactive
3D modeling workflow. Specifically, users can depict the desired
object by typing in text prompts and assembling basic shapes with
their familiar modeling software (such as Tinkercad, Blender, and
SketchUp). Then, Coin3D would construct the on-the-fly feature
volume in a few seconds, which enables the preview of the result
from arbitrary viewpoints or even progressively adjust/regenerate
the designated local part of the object. For example, we can generate
a bronze car by assembling basic shapes and incrementally adding
tubes or changing tires as shown in Fig. 1. However, even though
adding 3D-aware conditions is technically plausible, there are still
some challenges to an interactive 3D modeling workflow, which
will be addressed in this work:

Coarse Shape Guidance. Since we only use simple basic shapes
(e.g., stacked spheres or cuboids) instead of intricate CAD models
for 3D guidance, the proxy-guided conditioning should allow some
freedom during the generation rather than being strict to the given
basic shapes, e.g., growing animal ears from the sphere head as
shown in Fig. 1. To achieve this goal, we design a novel 3D adapter
to process the 3D control, where the 3D proxies (basic shapes) are
first voxelized and extracted to 3D features, and then integrated
into the spatial features of a multiview generation pipeline [Liu et al.
2023a]. In this way, users can manipulate the control strength by

changing the plug-in weights, enabling controlling the generated
object more or less close to the given proxy.

Interactive Modeling. An interactive and productive 3D genera-
tion workflow should support progressive modeling operations and
responsive preview, i.e. seamlessly adding/adjusting shape primi-
tives or precisely regenerating local parts without touching others,
while all the operated results should be previewed as quickly as
possible without time-consuming reconstruction. To fulfill the de-
mands, we first develop a novel proxy-bounded editing strategy,
which ensures precise bounded control and natural style blending
when modifying part of the object, and then utilize a progressive
volume caching mechanism by memorizing stepwise 3D features
to enable responsive preview.

Consistent Reconstruction. To facilitate the standard CG work-
flow, one might need to export the generated assets into textured
mesh with reconstruction. However, even with 3D-aware condi-
tioning, there might still be poor reconstructions when naïvely
reconstructing objects using synthesized multiview images due to
the limited viewpoints (see Sec. 4.4). To tackle this issue, we propose
to leverage the proxy-guided feature volume during reconstruction
with a novel volume-SDS loss. This strategy effectively exploits the
controlled 3D context during the score distillation sampling [Poole
et al. 2022] and faithfully improves the reconstruction quality.

Our contributions can be summarized as follows. 1) We propose
a novel controllable and interactive 3D assets generation frame-
work, named Coin3D. Our method designs a 3D-aware adapter
to take simple 3D shape proxies as guidance to control the object
generation, which supports interactive generation operations such
as altering prompts, adjusting shapes, or fine-grained local part
regeneration. 2) To ensure an interactive and consistent experience
of generative 3D modeling, we develop several techniques, includ-
ing proxy-bounded editing for precise and seamless part editing,
progressive volume cache to support responsive preview from arbi-
trary views, and a conditioned volume-SDS to improve the mesh
reconstruction quality. 3) Extensive experiments of interactive gen-
eration with various shape proxies and the interactive workflow
deployed on the 3D modeling software (e.g., Blender) demonstrate
the controllability and productivity of our method on generative
3D modeling.

2 RELATEDWORKS
2.1 3D Object Generation
3D object generation is a popular task in computer vision and
graphics. Early works [Achlioptas et al. 2018; Dubrovina et al. 2019;
Kluger et al. 2021] mainly focus on natively generating 3D repre-
sentations from models, such as polygon meshes [Gao et al. 2022;
Groueix et al. 2018; Kanazawa et al. 2018; Nash et al. 2020; Wang
et al. 2018], pointclouds [Achlioptas et al. 2018; Fan et al. 2017;
Nichol et al. 2022; Yu et al. 2023], parametric models [Hong et al.
2022; Jiang et al. 2022], voxels [Choy et al. 2016; Sanghi et al. 2022;
Wu et al. 2017; Xie et al. 2019], or implicit fields [Chan et al. 2022,
2021; Cheng et al. 2023a; Gu et al. 2021; Jun and Nichol 2023; Li
et al. 2023b; Mescheder et al. 2019; Park et al. 2019; Skorokhodov
et al. 2022], which learn from specific CAD database [Chang et al.
2015] and are often bounded by specific categories (e.g., chairs, cars,
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Figure 2: Overview. Given a coarse shape proxy and user prompts that describe the identity, our method first constructs 2D
image candidates from the proxy’s silhouette and 3D proxy samples as input conditions. Then, we employ a 3D adapter to
integrate 3D-aware control to the diffusion’s denoising process with a 3D control volume 𝐹𝐶 , yielding multiview images of the
object. By fully leveraging 𝐹𝐶 , we realize accelerated 3D previewing with volume cache and also improve mesh reconstruction
quality.

and etc.) due to the limited network capacity and data diversity.
Recently, with the rapid evolution in large-scale generative mod-
els, especially the great success in 2D diffusion models [Ramesh
et al. 2022; Rombach et al. 2022; Saharia et al. 2022], methods like
DreamFusion [Poole et al. 2022], SJC [Wang et al. 2023a] and their
follow-up works [Chen et al. 2023a; Lin et al. 2023; Melas-Kyriazi
et al. 2023; Raj et al. 2023; Seo et al. 2023; Tang et al. 2023a,b; Xu et al.
2023c] attempt to distill 2D gradient priors from the denoising pro-
cess using score distillation sampling loss (SDS loss) or its variants,
which guide the per-shape neural reconstruction following users’
text prompts. While being generic to unlimited categories and di-
verse composited results with prompt engineering, these lines of
work often suffer from unstable convergence due to the noisy and
inconsistent gradient signal, which often leads to incomplete results
or “multi-face Janus problem” [Chen et al. 2023a]. Subsequently,
Zero123 [Liu et al. 2023c] analyzes the viewpoint bias problem of
the generic 2D latent diffusion model (LDM), and proposes to train
an object-specific LDMwith relative viewpoint as a condition using
Objaverse dataset [Deitke et al. 2023], which shows promising re-
sults in the image-to-3D tasks, and has been widely adopted in the
follow-up 3D generation works [Liu et al. 2023d; Qian et al. 2023].
While being fine-tuned on multiview images, Zero123 still suffers
from the cross-view inconsistency issue as its resulting images can-
not satisfy the requirements for reconstruction. Hence, later works
such as MVDream [Shi et al. 2023b], SyncDreamer [Liu et al. 2023a],
Zero123++ [Shi et al. 2023a] and Wonder3D [Long et al. 2023] pro-
pose to enhance multiview image generation, which either trains
with stacked views [Long et al. 2023; Shi et al. 2023a,b] or builds
synchronized volumes online to condition the diffusion process [Liu
et al. 2023a], and usually enables to produce highly consistent im-
ages or yields 3D reconstructions in few seconds. Very recently,

LRM [Hong et al. 2023] and its variant methods [Wang et al. 2023b;
Xu et al. 2023b] propose to train an end-to-end transformer-based
model, which directly produces neural reconstruction given one or
few perspective images. Nevertheless, existing 3D object genera-
tion methods primarily focus on using text prompts (text-to-3D) or
images (image-to-3D) as the input, which cannot accurately convey
exact 3D shapes or precisely control the generation in a 3D manner.
By contrast, our method first adds 3D-aware control to the mul-
tiview diffusion process without compromising generation speed,
which realizes interactive generation workflow with 3D proxy as
conditions.

2.2 Controllable and Interactive Generation
Adding precise control to the generative methods is crucial for pro-
ductive content creation [Bao et al. 2023; Epstein et al. 2022; Yang
et al. 2022a, 2024, 2022b, 2021]. Previous generative works [Bao et al.
2024; Chen et al. 2022; Deng et al. 2023; Hao et al. 2021; Melnik et al.
2024] mainly learn a latent mapping of the attributes to add control
to the generation, but are limited to specific categories (e.g., human
faces or nature landscape). Recent progress in 2D diffusion models,
such as ControlNet [Zhang et al. 2023] and T2I-Adapter [Mou et al.
2023], enables various 2D image hints (e.g., depth, normal, soft-
edge, human poses, color grids, and etc.), to interactively control
the denoising process of the image generation. However, similar
controllable capabilities [Bhat et al. 2023; Cohen-Bar et al. 2023;
Pandey et al. 2023] in 3D generation are far from applicable. For
generative 3D editing, recent works [Cheng et al. 2023b; Li et al.
2023a] propose to constrain the text-driven 3D generation at the
desired region, but cannot support controlling the exact geome-
try shape. For Controllable 3D generation, the most related works
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to our methods are Latent-NeRF [Metzer et al. 2023] and Fanta-
sia3D [Chen et al. 2023a]. However, these two works cannot ensure
steady convergence and the generated results are usually far from
the given 3D shape (see Sec. 4.2), as they naïvely add control to
the 3D representation regardless of altering the supervision of 2D
priors (i.e., SDS loss). Other works such as Control3D [Chen et al.
2023b] only add control from 2D sketches/silhouettes instead of
3D space. Moreover, all these methods require a long time of re-
construction (e.g., from dozens of minutes to hours) to inspect the
effect of editing or controlling, which cannot fulfill the demand for
interactive modeling. On the contrary, our method directly inte-
grates the 3D-aware control into the diffusion process, which not
only ensures faithful and adjustable control over the 3D generation
but also allows to interactively preview the generated/edited 3D
object in a few seconds.

3 METHOD
We introduce Coin3D, a novel Controllable 3D assets generation
framework, which adds 3D-aware control to the multiview diffu-
sion process in object generation tasks, enabling an interactive
modeling workflow for fine-grained customizable object genera-
tion. An overview of Coin3D is shown in Fig. 2. Instead of using
conventional text prompts or a perspective image as a condition,
our framework employs a coarse geometry proxy made from basic
shapes (e.g., a snowman composed of two spheres, two sticks, and
one cone), complemented by user prompts that describe the object’s
identity. Then, the diffusion-based generation will be conditioned
on both a voxelized 3D proxy and 2D image candidates generated
by controlled 2D diffusion with the proxy’s silhouette (e.g., images
with different appearances in the left bottom of Fig. 2). During
the 3D-aware conditioned generation, we use a novel 3D adapter
module that seamlessly integrates proxy-guided controls with ad-
justable strength into the diffusion pipeline (Sec 3.1). To deliver an
interactive generation workflow with fine-grained 3D-aware part
editing and the responsive previewing ability, we also introduce
proxy-bounded editing to precisely control the volume update, and
employ an efficient volume cache mechanism to accelerate the im-
age previewing at arbitrary viewpoints (Sec 3.2). Furthermore, we
propose a volume-conditioned reconstruction strategy, which ef-
fectively leverages the 3D context from feature volume to improve
the reconstruction quality (Sec 3.3).

3.1 Proxy-Guided 3D Conditioning for
Diffusion

3D proxy as initial condition. As illustrated in Fig. 2, our method
uses a 3D coarse shape proxy assembled from basic elements (e.g.,
cubes, cylinders, cones, spheres, etc.) and user prompts to condition
the multiview diffusion process. More specifically, given the coarse
shape 𝑃 and prompts 𝑦, we want to predict 𝑁𝑣 consistent images
{x𝑖 |𝑖 = 1, 2, . . . , 𝑁𝑣} under the camera poses {c𝑖 |𝑖 = 1, 2, . . . , 𝑁𝑣}
using a multiview diffusion-based generator 𝑓 as the following:

x(𝑖:𝑁𝑣 ) = 𝑓 (𝑃,𝑦, c(𝑖:𝑁𝑣 ) ) . (1)

Note that, unlike regular 2D diffusion, multiview diffusion syn-
chronously performs denoising iterations on all the preset views,

which integrates cross-view correlations with view-dependent self-
attention [Long et al. 2023; Shi et al. 2023a] or spatial volume [Liu
et al. 2023d,a]. To simplify the preparation of proxy shapes, our
method allows the user to realize the input by simply scaling and
assembling basic shapes in 3D modeling software (e.g., Tinkercad,
SketchUp, or Blender) without relying on complex modeling skills.
Hence, to adapt the coarse proxy inputs (i.e., a coarse polygon
mesh) for 3D generation tasks, we develop a two-pathway condi-
tion preprocess for the proxy. First, we sample 𝑁𝑆 surface points
P = {p𝑖 |𝑖 = 1, 2, . . . , 𝑁𝑆 } on the proxy mesh, which will be used
for the 3D-aware control for the generation pipeline. Second, we
use the proxy’s rendered silhouette and users’ prompts as a con-
dition, and generate multiple 2D image candidates for interactive
appearance selection [Rombach et al. 2022; Zhang et al. 2023].

3D-aware control with 3D adapter. We introduce the 3D adapter to
add 3D-aware control from coarse proxy samples to the multiview
diffusion pipeline, which yields multiview images of the object
following the given proxy shape. To achieve the lossless 3D control
of the diffusion model, inspired by volumetric multiview diffusion
works [Liu et al. 2023b,a], we construct a 3D control volume to
add the 3D-aware context into the diffusion pipeline, where the
volume is a voxel feature grid containing 𝑣3 vertices. As shown in
the middle part of Fig. 1, the 3D adapter receives two inputs from
proxy feature volume 𝐹𝑉 and the multiview image fused volume 𝐹 𝑡

𝐼
.

Specifically, 𝐹𝑉 is constructed by first voxelizing the proxy samples
P to fill in the zero-initialized occupancy grid, where each grid
will be assigned to 1 if containing any point. 𝐹 𝑡

𝐼
is the multiview

feature volume constructed by unprojecting and fusing multiview
images x𝑡(𝑖:𝑁 ) produced by the denoising UNet 𝑓U at timestamp 𝑡 .
𝐹 𝑡
𝐼
is the multiview feature volume, which is constructed by first

projecting vertices of𝑉 onto the multi-view images x𝑡(𝑖:𝑁 ) to obtain
interpolated image-plane features, and then fusing them with a 3D
CNN module. x𝑡(𝑖:𝑁 ) are produced from the denoising process of
UNet 𝑓U at timestamp 𝑡 . Then, for each denoising step 𝑡 in the
3D adapter, we first perform 3D convolution (with 3D UNet 𝑓VP)
on the volume 𝐹𝑉 , and hierarchically add the intermediate layer
outputs to the 3D convolution (with 3D UNet 𝑓VM) of multiview
feature volume 𝐹 𝑡

𝐼
, which yields the final 3D control volume 𝐹 𝑡

𝐶
.

Then, during the multiview denoising of the 2D diffusion model,
we first project the 𝐹 𝑡

𝐶
to align the corresponding view to obtain

2D feature map 𝐹 𝑡𝑝 [Yao et al. 2018], and then integrate the 𝐹 𝑡𝑝 (with
depthwise attention) along with CLIP-embedded candidate image
feature and viewpoint embedding [Liu et al. 2023c] to the Zero123’s
diffusion UNet [Liu et al. 2023c].

Training 3D adapter with proxy samples. To train the 3D adapter
with coarse proxy as conditions, we preprocess each training object
item into several multiview images and uniformly sampled points
on the surface. For each training step, we randomly select 𝐵 condi-
tioning and target images with the corresponding point samples,
and also 𝐵 timestamp with the Gaussian noise 𝜖 (1:𝐵) ∼ N ∈ (0, 1).
We enforce the network to predict the added noises following [Rom-
bach et al. 2022; Song et al. 2020], which is defined as:

min
𝜃
E𝑡,x(1:𝑁𝑣 ) ,𝜖 (1:𝑁𝑣 ) ∥𝜖𝑖 − 𝜖𝜃 (x𝑡𝑖 , 𝑡, 𝑐 (𝐼 , 𝐹

𝑡
𝐶 , c𝑖 ))∥, (2)
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where 𝜖𝜃 is the model predicted noise, 𝑐 (𝐼 , 𝐹 𝑡
𝐶
, c𝑖 ) is the conditioned

embedding of candidate image 𝐼 , 3D control volume 𝐹 𝑡
𝐶
and cam-

era view c𝑖 . During the training procedure, we use zero convolu-
tion [Zhang et al. 2023] for the proxy feature volume convolution
UNet 𝑓VP while freezing other layers, which enables manipulating
control strength during the generation.

3.2 Interactive Generation Workflow
In 3D modeling tasks, artists are likely to adjust the target object
back and forth, and progressively edit the local part for satisfac-
tory results. However, the interactive generation and previewing
for 3D objects remains an open problem due to the lack of fine-
grained controlling ability and slow reconstruction speed [Cheng
et al. 2023b; Li et al. 2023a]. Hence, we develop a novel interactive
and responsive generation workflow upon the Coin3D framework,
which fully leverages the piecewise proxies of the condition for
easy and precise part editing, and reuses 3D control volume for
interactive previewing.

Proxy-bounded part editing. As the coarse proxies are mainly con-
structed with basic shape elements, we design an interactive local
part editing workflow based on the elements in the proxy. Specifi-
cally, users can specify a certain piece from the basic shapes, and
regenerate the piece content. For example, we can regenerate one
of the pumpkins into a red apple by designating the sphere on the
plate, as shown in Fig. 3. However, because the multiview diffusion
model is both conditioned on 3D volume and 2D images, it is not
trivial to realize the editing regardless of the complete conditions.
Therefore, we propose a two-pathway condition editing scheme
that considers both 2D and 3D conditions, as illustrated in Fig. 3.
For 2D conditions, we construct a 2D mask by projecting masked
proxies at the desired editing view and perform diffusion-based 2D
regenerating (a.k.a. masked image-to-image inpainting) [Meng et al.
2021; Zhou et al. 2023] with the mask. We then use the edited image
as the image condition for the denoising steps. For 3D conditions,
we first construct a 3D feature mask by slightly dilating the masked
proxy, which ensures seamless fusion of the newly generated con-
tent. Then, during each denoising step, we reuse the cached original
3D control volume and only partially update the unmasked volume

according to the feature mask𝑀 , as:

𝐹 𝑡𝐶 = (1 −𝑀)𝐹 𝑡𝐶 +𝑀𝐹 𝑡𝐶 , (3)

where 𝐹 𝑡
𝐶
is the updated volume by fusing cached volume 𝐹 𝑡

𝐶
and

predicted volume 𝐹 𝑡
𝐶
at 𝑡 . By enabling proxy-bounded masks on

both 2D and 3D conditions, we can precisely edit the local part at
the original object while preserving other parts unchanged.

Interactive preview with progressive volume caching. To ensure a
smooth experience for interactive generation, we want to preview
the editing results in a few seconds and inspect the edited effect
from arbitrary viewpoints. Hence, we design a progressive volume
caching mechanism, which memorizes the latest 3D control volume
for each timestamp 𝑡 . Then, during the preview stage, we transfer
the user’s viewpoint spanning poses c′ inside themodeling software
to the viewpoint condition and volume projection in multiview
diffusion. To make the preview responsive, we use the cached 3D
control volume without re-running the 3D adapter, and instantly
decode [Bohan 2023] the preview image for each step.

3.3 Volume-Conditioned Reconstruction
The outcome of the diffusion model is a set of multiview images
of the object, so we need to reconstruct it to 3D representation
(e.g., using NeuS [Wang et al. 2021]) for CG applications. However,
naïvely reconstructing with multiview images is sub-optimal and
might result in unexpected geometry due to limited viewpoints (see
Sec. 4.4). Therefore, we integrate 3D-aware context from the 3D
control volume 𝐹 𝑡

𝐶
to the reconstruction stage, which improves the

reconstruction quality. Specifically, we propose a volumetric-based
score distillation sampling, called volume-SDS, which integrates
the 3D control prior from the voxelized feature 𝐹 𝑡

𝐶
to the field’s

back-propagation as the following:

Δ𝑥𝐿𝑉 −𝑆𝐷𝑆 = 𝑤 (𝑡) (𝜖𝜃 (x𝑡 , 𝑡, 𝑐 (𝐼 , 𝐹 𝑡𝐶 , c)) − 𝜖), (4)

where𝑤 (𝑡) is the weighting function [Poole et al. 2022]. In this way,
the reconstruction can be decently supervised by 3D control signals
to achieve better mesh quality (see Sec. 4.4). Please refer to the the
supplementary material for more details of the reconstruction.

4 EXPERIMENTS
We first compare our method with image-based 3D generation
in Sec. 4.1, and compare with controllable 3D object generation
methods in Sec. 4.2. Then, we show the interactive generation
applicability with designated part editing in Sec. 4.3. Finally, we
perform ablation studies to analyze the design of our framework in
Sec. 4.4.

4.1 Comparison on Proxy-based and
Image-based 3D Generation

So far, the most stable 3D object generation pipelines are mainly
image-based, i.e., giving a single image as a conditioning input,
and then generating multiview images for reconstruction [Liu et al.
2023a; Long et al. 2023; Shi et al. 2023a] or direct 3D representa-
tions [Hong et al. 2023]. Unlike these methods, we use a coarse
shape proxy as a guidance through the entire interactive generation
pipeline. Since all these methods use image conditions to bootstrap
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Figure 4: We compare our proxy-based generation method with image-based methods (i.e., Wonder3D [Long et al. 2023] and
SyncDreamer [Liu et al. 2023a]) on the generated multiview images and reconstructed textured mesh.

Methods Quantitative Metrics User Study
CLIP Score ↑ ImageReward ↑ GPTEvals3D ↑ Matching Degree ↑ Recon. Quality ↑
Proxy-Based vs. Image-Based 3D Generation

Wonder3D [Long et al. 2023] 0.251 -0.557 980 1.613 1.770
SyncDreamer [Liu et al. 2023a] 0.260 -0.152 962 1.654 1.594
Ours 0.266 0.026 1035 2.733 2.634

Controllable 3D Object Generation
Fantasia3D [Chen et al. 2023a] 0.212 -1.597 810 1.267 1.273
Latent-NeRF [Metzer et al. 2023] 0.246 -1.188 1146 1.930 1.918
Ours 0.249 -0.749 1204 2.801 2.809

Table 1: We perform quantitative evaluation and user studies
on the 3D generation task.

the diffusion model, we first compare our method with SOTA image-
based generation methods (i.e., Wonder3D [Long et al. 2023] and
SyncDreamer [Liu et al. 2023a]) using the same image candidates,
where our method also add extra coarse shapes as conditioning.

Qualitative comparison. We show the multiview images and the
reconstructed textured meshes in Fig. 4. As shown in Fig. 4, the
predicted views and the textured meshes fromWonder3D and Sync-
Dreamer both have some artifacts (e.g., distorted green turtle and
yellow swimming ring at the first and third row in Fig. 4 (b) (c), miss-
ing hollowed handrail and short legs at the second row in Fig. 4 (b),
missing white creamy middle layer at the fourth row in Fig. 4 (c)).
Thanks to the proxy-guided conditioning and volume-conditioned
reconstruction, our method can synthesize multiview images free
of single view ambiguity by complementing 3D context from the
proxy (e.g., complete chairs with correct hollowed handrail in Fig. 4
(a)), and also consistently reconstruct 3D objects with intact shape
and vivid appearance.

Quantitative comparison. We use CLIP score [Radford et al. 2021]
to evaluate the text-object matching degree, and ImageReward [He
et al. 2023; Xu et al. 2023a] and GPTEvals3D [Wu et al. 2024] to eval-
uate the perceptual quality of the predicted multiview images. As
presented in Table 1, our method achieves the overall best metrics,

demonstrating that adding proxy-based conditioning can improve
the quality of 3D generation tasks. Note that Wonder3D’s ImageRe-
ward score is lower than SyncDreamer’s due to the evaluator’s
bias of orthogonal image views, while their Elo scores [Elo 1967]
evaluated by GPTEvals3D are comparable.

User study. We also conduct a user study to compare our method
with others. Following TEXTure [Richardson et al. 2023], we ask
30 users to sort 35 testing examples in random order based on the
perceptual quality and content matching degree (w.r.t the given
image or text prompts), and assign the scores by their ranking (i.e.,
with a score of 3 for the ordered best one and a score of 1 for the
last one). As reported in Table 1, our method achieves the best
score among all the methods. More details can be found in the
supplementary material.

4.2 Comparison on Controllable 3D Object
Generation

We compare our method with Controllable 3D object generation
methods, including Latent-NeRF [Metzer et al. 2023] and Fanta-
sia3D [Chen et al. 2023a]. Latent-NeRF introduces a sketch-shape
guided loss, which constrains the density field close to the surface of
the shape proxy, while Fantasia3D uses coarse shapes as the geome-
try initialization of DMTet [Shen et al. 2021]. In the experiment, we
give all the methods the same coarse shape and the text prompts as
a guidance and output the neural reconstructions’ rendered views
for comparison (since Latent-NeRF does not officially provide mesh
extraction). As shown in Fig. 4, Latent-NeRF generally obtains plau-
sible results but fails to produce tiny shape and appearance details
(e.g., blurry textured sofa, fox missing clear eyes and right arms
and missing sunflower in Fig. 5 (b)), which indicates that directly
applying 3D control to the 3D representation is sub-optimal since
it might not work smoothly with the generic SDS loss. For Fan-
tasia3D, since it only uses the 3D shape for initialization rather
than supervision, it often generates overgrowth results that do not
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Figure 5: We compare the Controllable 3D generation with Latent-NeRF [Metzer et al. 2023] and Fantasia3D [Chen et al. 2023a].

Part Editing Part EditingEdit View Novel Views Edit View Novel Views

Original 
Instance

Edited 
Instance

Part Editing Edit View Novel Views

Cakes with candles Teddy bear with red scarf and green hat Penguin with fired torch and red bag

Figure 6: We conduct interactive generation with part editing on several basic shape proxies.

follow the given shape (e.g., inflate sofa, the fox with incomplete
downward arms, pot with many leaves and a broken sunflower
in Fig. 5 (c)) and also slightly suffers from “multi-face Janus prob-
lem” (e.g., multi-face fox in Fig. 5 (c)). Since both Latent-NeRF and
Fantasia3D use vanilla 2D diffusion model as prior while being
agnostic to the multi-view correlations, their results are sensitive
to the initialization and hyperparameter settings. In contrast, our
method directly adds 3D-aware control to the diffusion process,
which essentially controls the supervisory of reconstruction’s 2D
diffusion prior and consistently achieves high fidelity generation
following users’ shape guidance. It is also noteworthy that, both
Latent-NeRF and Fantasia3D require a long period of reconstruc-
tion (e.g., dozens of minutes) to give an impression of what the
object might look like, making it unusable for interactive modeling,
while our framework bypasses the reconstruction stage and allows
to preview the 3D object in only a few seconds.

4.3 Interactive Generation with Part Editing
We now present examples of interactive generation with progres-
sive part editing. As shown in Fig. 6, users can first generate a basic
instance (e.g., a base of cake, a teddy bear, or a penguin) with shape
proxy, and then progressively add new shape blocks with changed
text prompts (e.g., adding a small cake with candles, a green hat and
red scarf, or even progressively add a torch and a red backpack from
the back view), which seamlessly enrich the content of the instance
while maintaining other parts unchanged. Notably, all these editing
operations can be finished in roughly 5∼10 seconds, which then

with Volume-SDSw/o Volume-SDSInput Shape & Image

Figure 7: We inspect the efficacy of volume-conditioned re-
construction.

allows interactive previewing of the edited 3D results. Please refer
to the supplementary video for the demonstration.

4.4 Ablation Studies
Volume-conditioned reconstruction. We then inspect the efficacy

of the volume-SDS loss by ablating during the shape reconstruction.
As shown in Fig. 7, by adding volume-SDS loss, we achieve better
geometry reconstruction (e.g., less floater and more reasonable
chair bottom) than naïve training on fixed multiview images [Liu
et al. 2023a; Long et al. 2023].

Proxy-bounded part editing. Wefinally analyze the proxy-bounded
part editing by ablating proxy conditioning and mask dilation strat-
egy in Fig. 8. Specifically, we choose a multi-step editing example,
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Figure 8: We analyze the importance of proxy guidance and
3D mask dilation in proxy-bounded part editing.

where the backpack should be edited from the back view. We merge
the front and edited back image conditions using mixed denois-
ing [Bar-Tal et al. 2023]. As shown in Fig. 8, the editing without
the proxy condition would result in broken shapes (e.g., dangling
flames and distorted body), while disabling mask dilation would
also make the editing less natural (e.g., tightly fused red bag and
broken hands). By equipping with the full strategies, we achieve a
seamless editing effect while preserving other content unchanged.

More ablation studies can be found in the supplementary mate-
rial.

5 CONCLUSIONS
We have proposed a novel 3D assets generation pipeline, named
Coin3D. Our method successfully integrates 3D-aware control from
coarse shape proxies to the 3D object generation task and enables
an interactive generation workflow, where users can freely alter
prompts/shapes or regenerate designated local parts, and inspect
the changes with interactive 3D preview in a few seconds.

Limitations and future works. First, our workflow starts from
synthesizing 2D image candidates, which provides users with quick
preview and selection but requires prompt engineering to obtain a
clean and satisfactory result without complex background textures.
In the future, we can finetune a 2D diffusion model with object-
centric data [Deitke et al. 2023] and introduce LLM-based prompt
enhancement [Gustavosta 2023] to handle this issue. Second, due to
the limited resolution of the base diffusion model [Liu et al. 2023c],
our method cannot produce fine-level details (e.g., complex fur
textures or wrinkled surface), which can be further improved by
adopting better backbones [Shi et al. 2023a] or taking the refinement
stage with high-resolution optimization [Lin et al. 2023; Tang et al.
2023a]. Third, our reconstructed texture meshes already baked
lighting effects while lacking PBR materials for modern rendering
pipelines. In future work, we can train a material-disentangled
diffusion model to enable generating objects with PBR materials.
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Supplementary Material

In this supplementary material, we describe more details of our
method in Sec. A. Besides, we also conduct more experiments in
Sec. C. More qualitative results can be found in our supplementary
video, and the source code will be released upon the acceptance of
this paper.

A IMPLEMENTATION DETAILS
A.1 Dataset Preparation
In our experiment, we use the LVIS subset of Objaverse [Deitke
et al. 2023] to train the model, which contains 28,000+ objects after
a heuristic cleanup process following Long et al. [Long et al. 2023].
For training view rendering, we set up 16 image views with -30°
pitch and evenly facing towards the object from 360°.

A.2 Evaluation Data Preparation and User Study
For quantitative comparison, we produced 30 testing examples
(coarse shapes and users’ prompts) for each experiment (Sec. 4.1
and Sec. 4.2). Then, for each example, we generate four images at
four poses {c𝑖 |𝑖 = 1, 5, 9, 13} from 16 evenly distributed viewpoints,
and calculates CLIP score [Radford et al. 2021], ImageReward [He
et al. 2023; Xu et al. 2023a] and GPTEvals3D [Wu et al. 2024] av-
erage Elo scores for each standalone view. For user studies, we
prepare 35 examples and merge the output images of each method
into one image. Then we ask 30 participants to sort the merged
images. In the comparison on proxy-based and image-based 3D
generation, we merged four multiview images and four textured
mesh rendering images into one. In the comparison on controllable
3D object generation, we merge four rendering images into one,
since LatentNeRF is difficult to extract the textured mesh.

A.3 Training and Network Details
During the initialization of the training, we followZhanget al. [Zhang
et al. 2023] to keep the multiview convolution network weights
𝑓 VM fixed, and use a dual 3D UNet structure to implement the 3D
feature Adapter with trainable copy initialization strategy. Specif-
ically, our proxy is first voxelized at a resolution of 32 × 32 × 32,
where the value of each voxel would be assigned to 1 if there is
any occupied 3D point inside the voxel. After that, the features will
be up-convolution to 64 channels through two layers of 3D con-
volution. For the training of the 3D adapter, we sample 256 points
on each object surface as a coarse proxy, and train the model at
256× 256 resolution. The learning rate is 0.00005 and the batch size
is set to 8, with 100K training iterations. The total training process
of the 3D Adapter takes about two days on an Nvidia A100-80G
graphic card.

During the texturedmesh reconstruction stage, we useNeuS [Wang
et al. 2021] as the neural representation. The total loss function is
defined as the following:

𝐿 = 𝐿𝑟𝑔𝑏 + 𝐿𝑉 −𝑆𝐷𝑆 + 𝐿𝑚𝑎𝑠𝑘 + 𝑅𝑒𝑖𝑘 + 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 + 𝑅𝑠𝑚𝑜𝑜𝑡ℎ (5)

where 𝐿𝑟𝑔𝑏 is the 𝐿2 loss between the generated multiview im-
ages x(𝑖:𝑁𝑣 ) and images rendered under the camera poses c(𝑖:𝑁𝑣 ) .
𝐿𝑉 −𝑆𝐷𝑆 is the volume-SDS loss proposed in the main paper. 𝐿𝑚𝑎𝑠𝑘

is the BCE mask loss of the rendered opacity, where the mask 𝑀

A dinosaur

Coarse Shape & Prompt (a) Ours (b) TEXTure

Figure I: We compare our method with the texture synthesis
method TEXTure [Richardson et al. 2023].

A birthday cake base

A birthday cake with 
three candles on top

Coarse Shape& 
Prompts (a) Ours (b) Fantasia3D

Figure J: We compare our proxy-bounded part editing with
Fantasia3D [Chen et al. 2023a] fine-tuning.

is obtained with existing methods [Kirillov et al. 2023]. 𝑅𝑒𝑖𝑘 is the
Eikonal loss that regularize the magnitude of the SDF gradients
of each sample point to be unit length. 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 and 𝑅𝑠𝑚𝑜𝑜𝑡ℎ are
respectively the sparse term used to reduce the floater of SDF and
the smooth term used to smooth the 3D surface. For the 3D recon-
struction of each instance, we takes about 5 minutes on a single
NVidia A100-80G graphic card.

B MORE DISCUSSIONS
B.1 Necessity of Proxy-guided 3D Generation
For personalized generation demands, we think only using text /
images is insufficient and also unintuitive for expressing 3D struc-
tures of objects and their spatial relationships. Hence, granting
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Coarse Shape & Input Image (a) Ours (b) depth-controlled Zero123++

Figure K: We compare our method with the depth-controlled
3D generation pipeline (Zero123++ [Shi et al. 2023a]).
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Figure L: Runtime overview of interactive generation.

system 3D-aware controllability with 3D proxy is necessary for 3D
generation. As for the acquisition of 3D proxies, we believe this
is not an obstacle for target users, as it can be assembled easily
using kids’ software like Tinkercad, taken from 3D modeling games
from SteamVR, or using LLM+procedural modeling instructions.
Similarly, ControlNet uses control images from raw sketches to
delicate line art, which also requires basic painting skills.

B.2 More Limitations
First, the resolution of 3D-aware control is bounded by the size
of the proxy feature volume, which cannot fully leverage control
from complex high-poly models. For example, we cannot generate
a large-scale urban scene with satisfactory building details. Second,
our method requires manual tuning control strength to balance
between over-constrained and under-constrained, which is also
similar to ControlNet [Zhang et al. 2023] as the control strength
mainly depends on the creators’ aesthetic choices.

C MORE EXPERIMENTS
C.1 Runtime Evaluation
As shown in Fig. L, given a 3D proxy and text prompt, Coin3D
first takes 2s to generate candidate images and 6s to generate 3D-
aware conditioned multiview images. During previewing, Coin3D

Default Params. * 𝑆!"# = 0.5
* 𝜆 = 0.5

Input * 𝑁$ = 512

Figure M:We analyze the 3D-aware controlling strength with
different control parameters. As shown above, increasing
proxy samples would add more shape constraints, while set-
ting lower weights would give more freedom of generation.

responds to the camera rotating instantly (<0.3s) and takes 2s for
convergence (baseline without volume-cache requires 6s). For inter-
active editing, Coin3D takes 3s to update the 2D condition and 9s to
update the feature volume, which is then ready for previewing. As
a comparison, existing editable 3D generation methods take much
longer for feedback, e.g., ~1h for Progressive3D and FocalDreamer,
~0.5h for Fantasia3D. Finally, Coin3D takes 4~5m (600 iterations)
to reconstruct and export the textured mesh (see Fig. 1 and Fig. 4
from the main paper for "proxies vs. textured meshes").

C.2 3D-Aware Controlling Strength
We analyze the adjustable 3D-aware controlling strength with dif-
ferent control parameters under the fixed seed in Fig. M and Fig. M.
For the default parameters, we set the number of proxy samples
𝑁𝑠 = 256 and fully unlocked weight control (𝜆 = 1.0 and 𝑆end = 1.0)
through the whole diffusion process. As a comparison, we set the
𝑁𝑠 = 512 or set partial weight control (𝜆 = 0.5 and 𝑆end = 0.5, i.e.,
only half weight applied and disable weights for the last half of the
denoising steps), where 𝜆 is the weight when adding intermediate
outputs of 𝑓𝑉𝑃 to 𝑓𝑉𝑀 , and 𝑆end is the ending step of 3D-aware
controlling. We found that increasing the number of proxy samples
would add more constraints to make it close to the given shape,
while setting lower weights would give more freedom to the net-
work to predict a curved shape.

C.3 Interactive Editing vs. Fine-Tuning
Fantasia3D

Since Fantasia3D supports fine-tuning on the pre-trained mesh,
it can also conduct interactive editing by updating text prompts.
Therefore, we compare our interactive editing method with Fan-
tasia3D fine-tuning. We use the user-guided generation method
mentioned in Fantasia3D. The first stage performs geometry opti-
mization and texture optimization based on the initial shape, and
the second stage uses the first stage’s optimized object but modi-
fies the text prompt during optimization. During the experiment,
we first use a flat cylinder as the initial input shape, and use text
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Figure M (cont.): We analyze the 3D-aware controlling strength with different control parameters. As shown above, setting
lower weights would give more freedom of generation.

prompt “a birthday cake base” to guide the optimization. Second,
we add candles by modifying the proxy shape and updating the
text prompt to “a birthday cake with three candles on top” and As
shown in Fig. J, our method successfully generates appealing cakes
with candles, while Fantasia3D fails to achieve a reasonable result
(e.g., almost no complete candle on the top).

C.4 Proxy-Based 3D Generation vs. Texture
Synthesis

We also compare our method with texture synthesis work TEX-
Ture [Richardson et al. 2023], which generates UV textures given the
corresponding geometry. As shown in Fig. I, when given the same
coarse proxy for generation, TEXTure tends to generate tightly
bounded textures on the given mesh, resulting in blurry appear-
ances and invisible facial features of the dinosaur. In contrast, our
method allows a certain degree of freedom during the generation,
which gracefully synthesizes the dinosaur with vivid facial details.
The experiment demonstrates that the proxy-based 3D generation
is far beyond the texture synthesis task, as it requires the method
to generate more details upon the coarse proxy shape.

C.5 Proxy-Based 3D Generation vs.
Depth-Controlled 3D Generation

We compare our proxy-based 3D generationwith the depth-controlled
3D generation pipeline from Zero123++ [Shi et al. 2023a], where
we feed the Zero123++ with the multiview depth maps rendered
from the coarse shape proxy. As shown in Fig. K, even only given
a coarse shape of the animal with no ears, our method still gen-
erates cute animal ears upon the simple shape, while Zero123++
can only synthesize novel views of the object that tightly fit to
the coarse shape proxy with poor facial details. This demonstrates
that simply using 2D depth control as a condition in multiview
generation cannot achieve the ideal coarse 3D control ability like
ours, which further proves the value of adding 3D-aware control in
a 3D manner.

C.6 User Studies of Ablation Studies
We selected 10 examples of the ablation studies in Sec. 4.4 and asked
24 users to judge whether the proposed strategies improve the re-
sults. The statistic shows 78% of users believe volume-SDS improves
the quality, 75% of users think 3D mask dilation makes editing more
natural, 96% of users find the proxy helpful in maintaining shape
integrity.
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C.7 User Study of 3D Interaction of Proxy-based
3D Generation

We also conducted a user study of proxy-based 3D generation. We
show users the process of making coarse shapes in Blender, as
well as the generated multi-view images and 3D reconstruction
results. We asked each participant to rate three questions: (a) the
difficulty of using 3D modeling tools; (b) overall satisfaction with
the effectiveness of our approach; (c) willingness to use ourmethods,
on a scale of 1 to 5, where 1 in (a) means easy to use, 5 in (b) means
satisfied with the effectiveness, and 5 in (c) means willing to use.
The score of (a) is 2.38, (b) is 4.62, and (c) 4.46, which indicates
that most of the participants consider the difficulty of coarse shape
modeling is acceptable and are willing to use our method.
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Figure N: More examples of controllable 3D object generation.
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A toy owl

A skateboard
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European style sofa stool

A brightly colored mushroom growing on a log

A dinosaur
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Figure N (cont.): More examples of controllable 3D object generation.
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